Wang, T. J., Zhang, F., Richars, B. J., et al. (2010). Common genetic determinants of vitamin D insufficiency: A genome-wide association study. The Lancet, 376(9736), 180–188. https://doi.org/10.1016/S0140-6736(10)60588-0
Bastaki, M., Huen, K., Manzanillo, P., Chande, N., Chen, C., Balmes, J. R., Tager, I. B., & Holland, N. (2006). Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenetics and Genomics, 16(4), 279–286. https://doi.org/10.1097/01.fpc.0000199498.08725.9c
Pichler, I., et al. (2011). Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Human Molecular Genetics, 20(6), 1232–1240. https://doi.org/10.1093/hmg/ddq552
Beben, B., McRae, A. F., et al. (2009). Variants in TF and HFE explain ∼40% of genetic variation in serum-transferrin levels. American Journal of Human Genetics, 84(1), 60–65. https://doi.org/10.1016/j.ajhg.2008.11.011
Evans, D. M., Zhu, G., Dy, V., et al. (2013). Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Human Molecular Genetics, 22(19), 3998–4006. https://doi.org/10.1093/hmg/ddt239
Lyssenko, V., Lupi, R., Marchetti, P., et al. (2007). Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. Journal of Clinical Investigation, 117(8), 2155–2163. https://doi.org/10.1172/JCI30706
Stein, D., Newman, T., & Savitz, J. (2006). Warriors versus worriers: The role of COMT gene variants. CNS Spectrums, 11(10), 745–748. https://doi.org/10.1017/s1092852900014863
Cauchi, S., El Achhab, Y., Choquet, H., et al. (2007). TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: A global meta-analysis. Journal of Molecular Medicine, 85(7), 777–782. https://doi.org/10.1007/s00109-007-0203-4
Hribal, M. L., Presta, I., Procopio, M. A., et al. (2011). Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B. Diabetologia, 54(4), 795–802. https://doi.org/10.1007/s00125-010-2038-8
Zhou, Y., Park, S., Su, J., et al. (2014). TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 23(24), 6419–6431. https://doi.org/10.1093/hmg/ddu359
Wardle, J., Carnell, S., Haworth, C. M. A., et al. (2008). Obesity associated genetic variation in FTO is associated with diminished satiety. Journal of Clinical Endocrinology & Metabolism, 93(9), 3640–3643. https://doi.org/10.1210/jc.2008-0472
Den Hoed, M., Westerterp-Plantenga, M. S., Bouwman, F. G., et al. (2009). Postprandial responses in hunger and satiety are associated with the rs9939609 single nucleotide polymorphism in FTO. American Journal of Clinical Nutrition, 90(5), 1426–1432. https://doi.org/10.3945/ajcn.2009.28053
Frayling, T. M., Timpson, N. J., Weedon, N. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316(5826), 889–894. https://doi.org/10.1126/science.1141634
Lemaitre, R. N., Tanaka, T., Tang, W., et al. (2011). Genetic loci associated with plasma phospholipid n-3 fatty acids: A meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genetics, 7(7), e1002193. https://doi.org/10.1371/journal.pgen.1002193
Harsløf, L. B. S., Larsen, L. H., Ritz, C., et al. (2013). FADS genotype and diet are important determinants of DHA status: A cross-sectional study in Danish infants. American Journal of Clinical Nutrition, 97(6), 1403–1410. https://doi.org/10.3945/ajcn.113.058685
Eynon, N., Ruiz, J. R., Femia, P., et al. (2012). The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS One, 7(8), e43132. https://doi.org/10.1371/journal.pone.0043132
Valladares, M., et al. (2020). Association of eating behaviour with clock gene polymorphism 3111T > C in children based on nutritional status. Annals of Human Biology, 47(1), 76–80. https://doi.org/10.1080/03014460.2019.1706764
Lozano, T. R., et al. (2016). Evening chronotype associates with obesity in severely obese subjects: Interaction with CLOCK 3111T/C. International Journal of Obesity, 40(10), 1550–1557. https://doi.org/10.1038/ijo.2016.116
Merino, J., et al. (2018). Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. International Journal of Medical Sciences, 15(10), 999–1004.
Hazra, A., Kraft, P., Lazarus, R., et al. (2009). Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Human Molecular Genetics, 18(23), 4677–4687. https://doi.org/10.1093/hmg/ddp428
Surendran, S., Adaikalakoteswari, A., Saravanan, P., et al. (2018). An update on vitamin B12-related gene polymorphisms and B12 status. Genes & Nutrition, 13(2). https://doi.org/10.1186/s12263-018-0596-4
Teran-Garcia, M., Santoro, N., Rankinen, T., et al. (2005). Hepatic lipase gene variant 514C>T is associated with lipoprotein and insulin sensitivity response to regular exercise. Diabetes, 54(7), 2251–2255. https://doi.org/10.2337/diabetes.54.7.2251
Brinkley, T., Halverstadt, A., Phares, D., et al. (2011). Hepatic lipase gene -514C>T variant is associated with exercise training-induced changes in VLDL and HDL by lipoprotein lipase. Journal of Applied Physiology, 111(6), 1871–1876. https://doi.org/10.1152/japplphysiol.00567.2011
Kaplan, R. C., et al. (2011). A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3. Human Molecular Genetics, 20(6), 1241–1251. https://doi.org/10.1093/hmg/ddq560
Yingchang, Y., Dollé, M., Imholz, S., et al. (2008). Multiple genetic variants along candidate pathways influence plasma high-density lipoprotein cholesterol concentrations. Atherosclerosis, 49(12), 2582–2589.
Castro-Orós, I., Pérez-López, J., Mateo-Gallego, R., et al. (2014). A genetic variant in the LDLR promoter is responsible for part of the LDL-cholesterol variability in primary hypercholesterolemia. BMC Medical Genomics, 7(17). https://doi.org/10.1186/1755-8794-7-17
Collins, M., Posthumus, M., & Schwellnus, M. (2010). The COL1A1 gene and acute soft tissue ruptures. British Journal of Sports Medicine, 44(14), 1063–1064. https://doi.org/10.1136/bjsm.2008.056184
Pai, J. K., Mukamal, K. J., Rexrode, K. M., et al. (2008). C-reactive protein (CRP) gene polymorphisms, CRP levels, and risk of incident coronary heart disease in two nested case-control studies. PLoS One, 3(1), e1395. https://doi.org/10.1371/journal.pone.0001395
Arkadianos, L., Valdes, M., Marinos, E., et al. (2007). Improved weight management using genetic information to personalize a calorie controlled diet. Nutrition Journal, 6(29). https://doi.org/10.1186/1475-2891-6-29
Jones, N., Kiely, J., Suraci, B., et al. (2016). A genetic-based algorithm for personalized resistance training. Biology of Sport, 33(2), 117–126. https://doi.org/10.5604/20831862.1198210
Murgia, C., & Adamski, M. (2017). Translation of nutritional genomics into nutrition practice: The next step. Nutrients, 9(4), 293. https://doi.org/10.3390/nu9040293
Joffe, Y., & Herholdt, H. (2020). What will it take to build an expert group of nutrigenomic practitioners? Lifestyle Genomics, 13(3), 122–128. https://doi.org/10.1159/000505506
Görman, U., Mathers, J., Grimaldi, K., et al. (2013). Do we know enough? A scientific and ethical analysis of the basis for genetic-based personalized nutrition. Genes & Nutrition, 8(4), 373–381. https://doi.org/10.1007/s12263-013-0334-6
G. Tabák A., Herder C., Rathmann W., et al. (2014), Prediabetes: A high-risk state for developing diabetes. Lancet. 2012 Jun 16; 379(9833): 2279–2290. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891203/
Abbott, (2016), The accuracy of the freestyle libre system. https://bit.ly/3aHXbS5
Attia P., (2021), Are continuous glucose monitors a waste of time for people without diabetes? https://peterattiamd.com/are-continuous-glucose-monitors-a-waste-of-time-for-people-without-diabetes/
Shah V. N., Dubose S. N., Li Z., et al., (2019), Continuous Glucose Monitoring Profiles in Healthy Nondiabetic Participants: A Multicenter Prospective Study. J Clin Endocrinol Metab. 2019 Oct; 104(10): 4356–4364. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296129/
Giada A., Giovanni S., Liisa H., et al., (2018), Diabetes and Prediabetes Classification Using Glycemic Variability Indices From Continuous Glucose Monitoring Data. J Diabetes Sci Technol. 2018 Jan;12(1):105-113. doi: 10.1177/1932296817710478. Epub 2017 Jun 1. https://pubmed.ncbi.nlm.nih.gov/28569077/
Zheng Z., Bao S., Shiqiong H., et al., (2020), Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol. 2020; 19: 102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335439/
Kolb H., Stumvoll M., Kramer W., et al. (2018), Insulin translates unfavourable lifestyle into obesity. BMC Medicine volume 16, Article number: 232 (2018). https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-018-1225-1
Chan-Sik K., Sok P., Junghyun K., (2017), The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J Exerc Nutrition Biochem. 2017 Sep 30; 21(3): 55–61. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643203/
George S., S Sivakami., (2004), Glucose, glycation and aging. Biogerontology. 2004;5(6):365-73. doi: 10.1007/s10522-004-3189-0. https://bit.ly/3MDGgxw
Alejandro G., (2017), Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv Nutr. 2017 Jan 17;8(1):54-62. doi: 10.3945/an.116.013912. Print 2017 Jan. https://pubmed.ncbi.nlm.nih.gov/28096127/
Samir S., David E. C., C Ronald K., (2016), Role of Dietary Fructose and Hepatic de novo Lipogenesis in Fatty Liver Disease. Dig Dis Sci. 2016 May;61(5):1282-93. doi: 10.1007/s10620-016-4054-0. https://pubmed.ncbi.nlm.nih.gov/26856717/
João C. P. S., Cátia M., Fátima O. M., et al., (2019), Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue. Metab Eng. 2019 Dec;56:69-76. doi: 10.1016/j.ymben.2019.08.018. Epub 2019 Aug 29. https://pubmed.ncbi.nlm.nih.gov/31473320/
Jiaoyue Z., Wen K., Pengfei X., et al., (2020), Impaired Fasting Glucose and Diabetes Are Related to Higher Risks of Complications and Mortality Among Patients With Coronavirus Disease 2019. Front Endocrinol (Lausanne). 2020; 11: 525. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365851/
Emmanuelle L., Charlotte L., Cyrille F., et al., (2021), A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front. Public Health, 28 July 2021 | https://doi.org/10.3389/fpubh.2021.695139 A Machine-Generated View of the R. https://www.frontiersin.org/articles/10.3389/fpubh.2021.695139/full
Francisco J., M. Dolores L., b Francisco J., et al., (2020) Admission hyperglycaemia as a predictor of mortality in patients hospitalized with COVID-19 regardless of diabetes status: data from the Spanish SEMI-COVID-19 Registry. Ann Med. 2021; 53(1): 103–116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651248/
Rachel J. P., Gerald I. S., (2020), Mechanistic Links between Obesity, Insulin, and Cancer. Trends Cancer. 2020 Feb; 6(2): 75–78. https://bit.ly/3MCwyeU
Tetsuro T., Hiroshi K., Takehiro S., (2017), Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: A population-based observational study. Int J Cancer. 2017 Jul 1;141(1):102-111. doi: 10.1002/ijc.30729. Epub 2017 Apr 22. https://pubmed.ncbi.nlm.nih.gov/28390156/
Biplab G., Sananda D., Tanaya D., (2018), Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother. 2018 Nov;107:306-328. doi: 10.1016/j.biopha.2018.07.157. Epub 2018 Aug 8. https://pubmed.ncbi.nlm.nih.gov/30098549/
Centers for Disease Control and Prevention (2021), The Surprising Truth About Prediabetes. https://www.cdc.gov/diabetes/basics/prediabetes.html
Soenens B.,(2021), Podcast – Het vette probleem van Amerika: hier komt de obesitasepidemie vandaan. https://podcast.standaard.be/episode/24027286
Burns C. M., Chen K, Kaszniak A. W., et al.,(2013), Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions. Neurology. 2013 Apr 23;80(17):1557-64. doi: 10.1212/WNL.0b013e31828f17de. Epub 2013 Mar 27. https://pubmed.ncbi.nlm.nih.gov/23535495/
Willette A. A., Bendlin B. B., Starks E. J., et al., (2015), Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease. JAMA Neurol. 2015 Sep;72(9):1013-20. doi: 10.1001/jamaneurol.2015.0613. https://pubmed.ncbi.nlm.nih.gov/26214150/
Luchsinger J. A., Tang M., Shea S., (2004), Hyperinsulinemia and risk of Alzheimer disease. Neurology
. 2004 Oct 12;63(7):1187-92. doi: 10.1212/01.wnl.0000140292.04932.87. https://pubmed.ncbi.nlm.nih.gov/15477536/
Joana A., Jianwen C., June S., (2016), Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. https://www.liebertpub.com/doi/10.1089/met.2018.0105
Glucotypes reveal new patterns of glucose dysregulation. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005143
Li B., Zhang C., Zhan Y. (2018), Nonalcoholic Fatty Liver Disease Cirrhosis: A Review of Its Epidemiology, Risk Factors, Clinical Presentation, Diagnosis, Management, and Prognosis. Can J Gastroenterol Hepatol. 2018 Jul 2;2018:2784537. doi: 10.1155/2018/2784537. https://pubmed.ncbi.nlm.nih.gov/30065915/
Younossi Z. M., Koenig A. B., Abdelatif D., et al., (2015), Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73-84. doi: 10.1002/hep.28431. Epub 2016 Feb 22. https://pubmed.ncbi.nlm.nih.gov/26707365/
Standl E., Schnell O., Ceriello A., (2011), Postprandial hyperglycemia and glycemic variability: should we care? Diabetes Care
. 2011 May;34 Suppl 2(Suppl 2):S120-7. doi: 10.2337/dc11-s206. https://pubmed.ncbi.nlm.nih.gov/21525442/
Pérez-Tasigchana R. F., León-Muñoz L. M., Lopez-Garcia E., et al. (2017), Metabolic syndrome and insulin resistance are associated with frailty in older adults: a prospective cohort study. Age Ageing. 2017 Sep 1;46(5):807-812. doi: 10.1093/ageing/afx023. https://pubmed.ncbi.nlm.nih.gov/28338890/
Sug S., Kim J. H., (2015), Glycemic Variability: How Do We Measure It and Why Is It Important? Diabetes Metab J. 2015 Aug;39(4):273-82. doi: 10.4093/dmj.2015.39.4.273. https://pubmed.ncbi.nlm.nih.gov/26301188/
International Diabetes Federation, (2022), Diabetes around the world in 2021. https://diabetesatlas.org/
Defries D., Taylor C.G., Appah P, et al., (2013), Consumption of buckwheat modulates the post-prandial response of selected gastrointestinal satiety hormones in individuals with type 2 diabetes mellitus. Metabolism. 2013 Jul;62(7):1021-31. doi: 10.1016/j.metabol.2013.01.021. https://pubmed.ncbi.nlm.nih.gov/23485142/
Natasha W., Feng Y., Ellen T. C., et al., (2021), Temporal Associations Among Body Mass Index, Fasting Insulin, and Systemic Inflammation. JAMA Netw Open. 2021 Mar 1;4(3):e211263. https://pubmed.ncbi.nlm.nih.gov/33710289/
Jeff S., Erin E., Cassandra E., (2010), Low-Carbohydrate Diets Promote a More Favorable Body Composition Than Low-Fat Diets. February 2010 – Volume 32 – Issue 1 – p 42-47. https://bit.ly/39lnIEG
Paula C., Shannon A., Laura L., (2014), Return of hunger following a relatively high carbohydrate breakfast is associated with earlier recorded glucose peak and nadir. Appetite. 2014 Sep;80:236-41. doi: 10.1016/j.appet.2014.04.031. Epub 2014 May 10. https://pubmed.ncbi.nlm.nih.gov/24819342/
Patrick W., Sarah E B., Graham F., et al., (2021) Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat Metab. 2021 Apr;3(4):523-529. doi: 10.1038/s42255-021-00383-x. Epub 2021 Apr 12. https://bit.ly/39pQsMm
Kathleen A. P., Dongju S., Renata Belfort-D., et al., (2011), Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 2011 Oct;121(10):4161-9. doi: 10.1172/JCI57873. Epub 2011 Sep 19. https://pubmed.ncbi.nlm.nih.gov/21926468/
Alpana P. S., Radu G. I., Catherine E. T., et al., (2015), Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels. Diabetes Care. 2015 Jul; 38(7): e98–e99. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876745/
Kimiko N., Masaru S., Yumie T., et al., (2018), Consuming Carbohydrates after Meat or Vegetables Lowers Postprandial Excursions of Glucose and Insulin in Nondiabetic Subjects. J Nutr Sci Vitaminol (Tokyo). 2018;64(5):316-320. doi: 10.3177/jnsv.64.316. https://pubmed.ncbi.nlm.nih.gov/30381620/
Lesley N. L., Cynthia J. H., Sofia F. M., et al., (2018), The Effect of Added Peanut Butter on the Glycemic Response to a High-Glycemic Index Meal: A Pilot Study. J Am Coll Nutr. May-Jun 2019;38(4):351-357. doi: 10.1080/07315724.2018.1519404. Epub 2018 Nov 5. https://bit.ly/3NEq9RF
David J. A. J., Cyril W. C. K., Andrea R. J., et al., (2006), Almonds Decrease Postprandial Glycemia, Insulinemia, and Oxidative Damage in Healthy Individuals. J Nutr. 2006 Dec;136(12):2987-92. doi: 10.1093/jn/136.12.2987. https://pubmed.ncbi.nlm.nih.gov/17116708/
Lorenzo N., Alessandro M., Domenico T., (2019), Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications. Front Endocrinol (Lausanne). 2019 Mar 8;10:144. doi: 10.3389/fendo.2019.00144. eCollection 2019. https://pubmed.ncbi.nlm.nih.gov/30906282/
Quora (2019), How long does it take for an insulin spike to away after eating? https://www.quora.com/How-long-does-it-take-for-an-insulin-spike-to-away-after-eating
Vetrani C, et al., (2019), Fibre-enriched buckwheat pasta modifies blood glucose response compared to corn pasta in individuals with type 1 diabetes and celiac disease: Acute randomized controlled trial. Diabetes Res Clin Pract. 2019 Mar;149:156-162. doi: 10.1016/j.diabres.2019.02.013. Epub 2019 Feb 16. https://pubmed.ncbi.nlm.nih.gov/30779970/
Tricò, D., Filice, E., Trifirò S., et al., (2016), Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under free-living conditions. Nutr Diabetes. 2016 Aug; 6(8): e226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022147/
Wyatt P., Berry S. E., Finlayson G., et al., (2021), Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat Metab. Author manuscript; available in PMC 2021 Apr 25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610681/
Biology and Medicine, (2015), Exercise Causes Muscle GLUT4 Translocation in an Insulin-Independent Manner. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1020.9266&rep=rep1&type=pdf
Colberg S. R., Zarrabi L., Bennington L., et al. ((2009), Postprandial Walking is Better for Lowering the Glycemic Effect of Dinner than Pre-Dinner Exercise in Type 2 Diabetic Individuals. J Am Med Dir Assoc. 2009 Jul;10(6):394-7. doi: 10.1016/j.jamda.2009.03.015. Epub 2009 May 21. https://pubmed.ncbi.nlm.nih.gov/19560716/
Erik A. R., Mark H., (2013), Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiol Rev. 2013 Jul;93(3):993-1017. doi: 10.1152/physrev.00038.2012. https://pubmed.ncbi.nlm.nih.gov/23899560/
Andrew B., Gabriel Z., Claudio B., et al., (2018), The Effects of Postprandial Exercise on Glucose Control in Individuals with Type 2 Diabetes: A Systematic Review. Sports Med
. 2018 Jun;48(6):1479-1491. doi: 10.1007/s40279-018-0864-x. https://pubmed.ncbi.nlm.nih.gov/29396781/
Lance B., (2011), Exercise and Insulin Resistance.October 2011 – Volume 33 – Issue 5 – p 44-47. https://bit.ly/3O4sxkr
G. Perseghin., T. B. Price., K. F. Petersen., et al., (1996), Increased Glucose Transport–Phosphorylation and Muscle Glycogen Synthesis after Exercise Training in Insulin-Resistant Subjects. N Engl J Med. 1996 Oct 31;335(18):1357-62. doi: 10.1056/NEJM199610313351804. https://bit.ly/3tr8ip2
Timothy D. H., Nathan C. W., Andrea M., et al., (2015), Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes. J Appl Physiol (1985). 2015 Mar 1;118(5):624-34. doi: 10.1152/japplphysiol.00917.2014. Epub 2014 Dec 24. https://bit.ly/3myfMmq
Gill J. M.R., Herd S. L., Hardmann A. E., (2010), Moderate exercise and post-prandial metabolism: issues of dose-response. J Sports Sci. 2002 Dec;20(12):961-7. doi: 10.1080/026404102321011715. https://pubmed.ncbi.nlm.nih.gov/12477005/
Jensen J., Rustad P.I., Kolnes A.J., Lai Y. (2011), The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise. Front Physiol. 2011; 2: 112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248697/
Reynolds A. N., Mann J. I., Williams S., et al. (2016), Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia
. 2016 Dec;59(12):2572-2578. https://pubmed.ncbi.nlm.nih.gov/27747394/
Robert H. L., (2013), Fructose: It’s “Alcohol Without the Buzz”1,2,3. Adv Nutr. 2013 Mar 1;4(2):226-35. doi: 10.3945/an.112.002998. https://pubmed.ncbi.nlm.nih.gov/23493539/
Scientists explain how alcohol causes hypoglycemia (too low blood sugar) https://www.medicalnewstoday.com/releases/93141#1
Staff DTN, (2018), Can Alcohol Cause Low Blood Sugar. https://diabetestalk.net/blood-sugar/can-alcohol-cause-low-blood-sugar
Spiegel K., Leproult R. Van Cauter E., (1999), Impact of sleep debt on metabolic and endocrine function. Lancet. 1999 Oct 23;354(9188):1435-9. doi: 10.1016/S0140-6736(99)01376-8. https://pubmed.ncbi.nlm.nih.gov/10543671/
Hancox R. J., Landhuis C. E., (2011), Association between sleep duration and haemoglobin A1c in young adults. J Epidemiol Community Health. 2012 Oct;66(10):957-61. doi: 10.1136/jech-2011-200217. Epub 2011 Nov 7. https://pubmed.ncbi.nlm.nih.gov/22068028/
Obstructive Sleep Apnea and Postprandial Glucose Differences in Type 2 Diabetes Mellitus. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A2525
Sara L. T., Tara L. Q., Jonathan B., et al., (2016), Variations in Daily Sleep Quality and Type 1 Diabetes Management in Late Adolescents. J Pediatr Psychol. 2016 Jul;41(6):661-9. doi: 10.1093/jpepsy/jsw010. Epub 2016 Mar 19. https://pubmed.ncbi.nlm.nih.gov/26994852/
Karine S., Kristen K., Rachel L., et al., (2005), Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985). 2005 Nov;99(5):2008-19. doi: 10.1152/japplphysiol.00660.2005. https://pubmed.ncbi.nlm.nih.gov/16227462/
Jean-Philippe C., Jean-Pierre D., Claude B., et al., (2009), Sleep duration as a risk factor for the development of type 2 diabetes or impaired glucose tolerance: Analyses of the Quebec Family Study. Sleep Med. 2009 Sep;10(8):919-24. doi: 10.1016/j.sleep.2008.09.016. Epub 2009 Mar 29. https://pubmed.ncbi.nlm.nih.gov/19332380/
James E. G., Steven B. H., Bernadette B. S., et al., (2007) Duration as a Risk Factor for Diabetes Incidence in a Large US Sample. Sleep. 2007 Dec;30(12):1667-73. doi: 10.1093/sleep/30.12.1667. https://bit.ly/3HipLG3
Mark T. U. B., Luiz M., (2010), Diabetes and sleep: A complex cause-and-effect relationship. Diabetes Res Clin Pract. 2011 Feb;91(2):129-37. doi: 10.1016/j.diabres.2010.07.011. https://pubmed.ncbi.nlm.nih.gov/20810183/
PubMed, (2000),, Effect of sleep deprivation on insulin sensitivity and cortisol concentration in healthy subjects. Diabetes Nutr Metab. 2000 Apr;13(2):80-3. https://bit.ly/3zwh49c
Ibasaraboh D. I., Angela Y. C., Bianca M. B., et al., (2019), Associations between poor sleep and glucose intolerance in prediabetes. Psychoneuroendocrinology. 2019 Dec;110:104444. doi: 10.1016/j.psyneuen.2019.104444. Epub 2019 Sep 12. https://bit.ly/3xConLa
Esther D., Marieke V. D., J. Gert V. D., et al., (2010), A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab
. 2010 Jun;95(6):2963-8. doi: 10.1210/jc.2009-2430. Epub 2010 Apr 6. https://pubmed.ncbi.nlm.nih.gov/20371664/
Spiegel K., Tasali E., Leproult R., Van Cauter E. (2009), Effects of poor and short sleep on glucose metabolism and obesity risk, Juni 2009. Nat Rev Endocrinol. 2009 May; 5(5): 253–261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457292/
Van Cauter E. , Spiegel K., Tasali E., et al. (2008) Metabolic consequences of sleep and sleep loss. Sleep Med. 2008 Sep;9 Suppl 1(0 1):S23-8. doi: 10.1016/S1389-9457(08)70013-3. https://pubmed.ncbi.nlm.nih.gov/18929315/
St-Onge M., Roberts A., Shechter A., et al., (2016), Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep. J Clin Sleep Med. 2016 Jan;12(1):19-24. doi: 10.5664/jcsm.5384. https://pubmed.ncbi.nlm.nih.gov/26156950/
Yoda K., Inaba M. Hamamoto K., et al.,(2015), Association between poor glycemic control, impaired sleep quality, and increased arterial thickening in type 2 diabetic patients. Published: April 14, 2015
https://doi.org/10.1371/journal.pone.0122521
Basse, Astrid L et al., (2018) Skeletal Muscle Insulin Sensitivity Show Circadian Rhythmicity Which Is Independent of Exercise Training Status. Front Physiol. 2018 Aug 28;9:1198. doi: 10.3389/fphys.2018.01198. eCollection 2018. https://pubmed.ncbi.nlm.nih.gov/30210362/
Van Cauter, E., Blackman, J. D., Roland, D., et al (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest. 1991 Sep; 88(3): 934–942. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC295490/
Wüst, S., Wolf, J., Hellhammer, D. H., Federenko, I., Schommer, N., & Kirschbaum, C. (2000). The cortisol awakening response: Normal values and confounds. Psychoneuroendocrinology, 25(1), 95–103. https://doi.org/10.1016/S0306-4530(99)00044-2
Giglberger, M., Peter, H. L., Kraus, E., Bärtl, C., Kudielka, B. M., & Wüst, S. (2022). Daily life stress and the cortisol awakening response over a 13-month stress period: Findings from the LawSTRESS project. Psychoneuroendocrinology, 140, 105712.
https://doi.org/10.1016/j.psyneuen.2022.105712
Marcovecchio, M. L., & Chiarelli, F. (2012). The effects of acute and chronic stress on diabetes control. Hormone Research in Paediatrics, 77(Suppl. 1), 29–36. https://doi.org/10.1159/000336340
Whitehead, N., & White, H. (2013). Systematic review of randomized controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. Journal of Human Nutrition and Dietetics, 26(2), 111–125. https://doi.org/10.1111/jhn.12006
Dominguetti, M., et al. (2023). Pre-exercise caffeine ingestion combined with low-dose glucose reduces exercise-related hypoglycaemia. Frontiers in Nutrition, 10, 1204567. https://doi.org/10.3389/fnut.2023.1204567
Spiegel, K., Leproult, R., & Van Cauter, E. (1999). Impact of sleep debt on metabolic and endocrine function. The Lancet, 354(9188), 1435–1439. https://doi.org/10.1016/S0140-6736(99)01376-8
Hancox, R. J., & Landhuis, C. E. (2011). Association between sleep duration and haemoglobin A1c in young adults. Journal of Clinical Sleep Medicine, 7(6), 623–627. https://doi.org/10.5664/jcsm.1476
Spiegel, K., Leproult, R., L’Hermite-Balériaux, M., Copinschi, G., Penev, P. D., & Van Cauter, E. (1999). Effect of sleep deprivation on insulin sensitivity and cortisol concentration in healthy subjects. The Lancet, 354(9188), 1435–1439. https://doi.org/10.1016/S0140-6736(99)01376-8
St-Onge, M. P., Zuraikat, F., Laferrère, B., Scaccia, S., Cui, Z., Aggarwal, B., & Jelic, S. (2023). Chronic insufficient sleep in women impairs insulin sensitivity independent of adiposity changes: Results of a randomized crossover trial. Diabetes Care, 46(8), 1806–1813. https://doi.org/10.2337/dc22-2392
Leproult, R., & Van Cauter, E. (2015). Single night of partial sleep deprivation induces insulin resistance and reduces metabolic clearance of glucose. Proceedings of the National Academy of Sciences, 112(17), 5698–5703. https://doi.org/10.1073/pnas.1425077112
Spiegel, K., Leproult, R., & Van Cauter, E. (2004). Sleep restriction for one week reduces insulin sensitivity in healthy young men. Metabolism, 53(7), 861–868. https://doi.org/10.1016/j.metabol.2003.10.032
Sondrup, N., Termannsen, A. D., Eriksen, J. N., Hjorth, M. F., & Færch, K. (2022). Effects of sleep manipulation on markers of insulin sensitivity: A systematic review and meta-analysis of randomized controlled trials. Sleep Medicine Reviews, 66, 101697. https://doi.org/10.1016/j.smrv.2022.101697
efewfgewgewg
efewfgewgewg